

Huntington Convention Center, Cleveland, OH | October 6-9, 2023

REBALANCE-HF Study Design

Phase II, multi-center, double-blind, Sham-controlled feasibility trial

PURPOSE: Evaluate the safety and initial effectiveness of catheter-based unilateral ablation of the right greater splanchnic nerve (GSN) in subjects having heart failure with preserved ejection

POPULATION: Symptomatic HF, ongoing GDMT, age ≥40, elevated PCWP at rest or exertion

REBALANCE-HF 90 Randomized

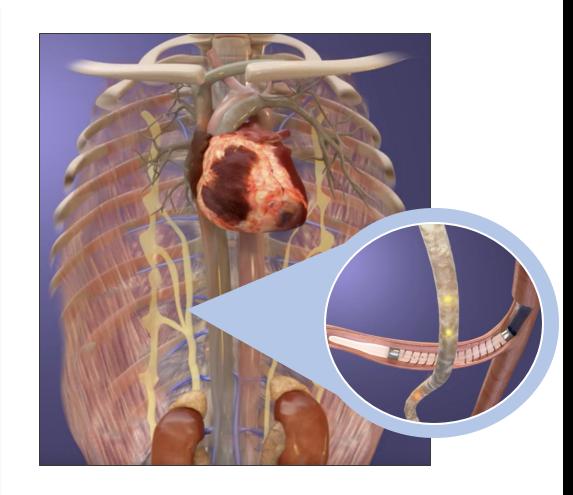
Treatment Group N=44

> Sham Group N=46

PRIMARY ENDPOINT

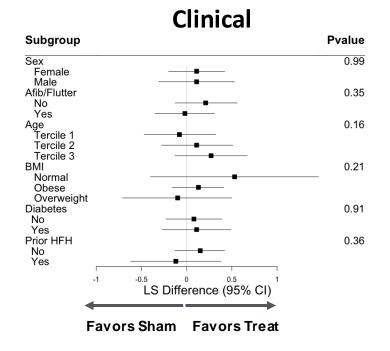
Reduction in mean PCWP at 1-month follow-up evaluated as a repeated measure at legs-up and exercise (20W) as compared to the baseline PCWP

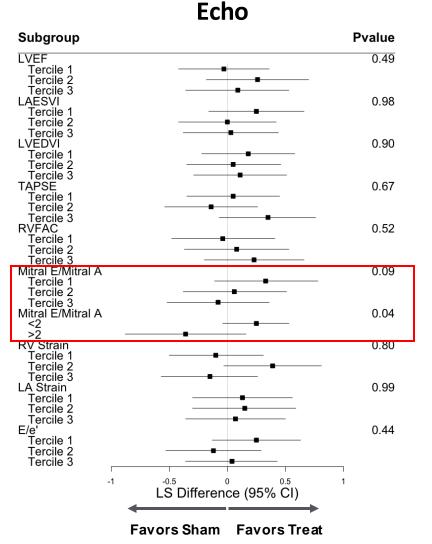
SECONDARY ENDPOINTS


- Change in KCCQ score over time from baseline
- Change in 6MWT score over time from baseline
- Incidence of HFH through 12-months
- Reduction in PCWP for each stage of exercise

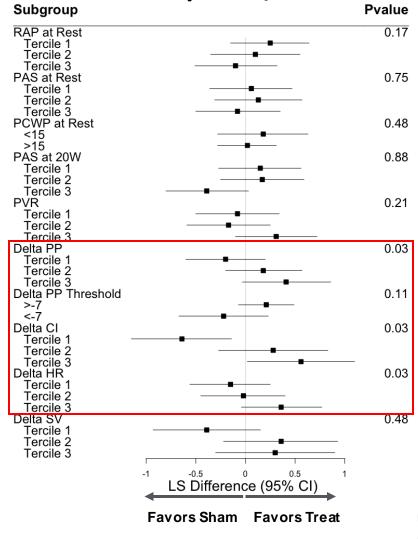
Approach and Objectives

Splanchnic Ablation for Volume Management (SAVM)

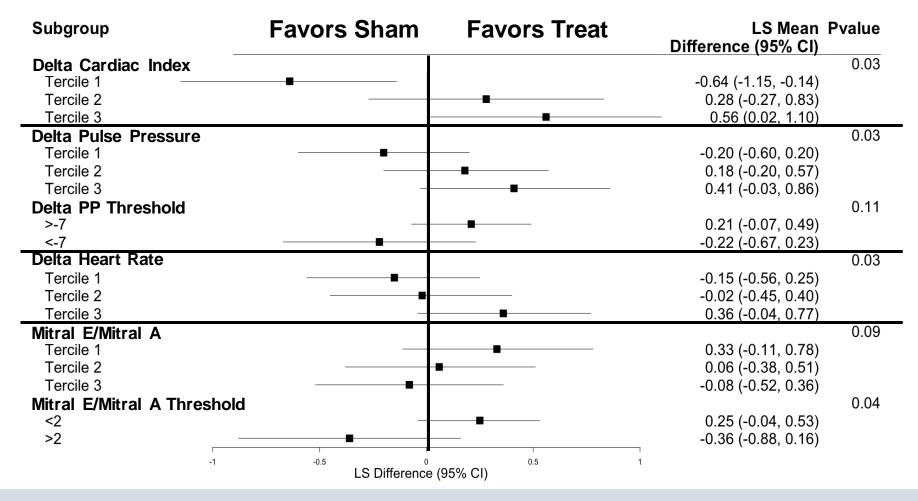

- Unilateral ablation of the right greater splanchnic nerve (GSN)
- Transvenous femoral procedure
- Minimally invasive and implant free
- Unilateral procedure retains the body's sympathetic response for emergency use



Conclusions from REBALANCE-HF Study

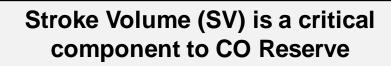

- SAVM (right-sided GSN ablation) is quick to perform and appears safe and welltolerated
- In a broad population of patients with HFpEF, SAVM had limited impact on hemodynamics (at 1 month) or clinical outcomes (at 6 and 12 months)
- Potential responder group identified:
 - →Rise in cardiac output when going from supine → standing position and during exercise
 - →Not limited by chronotropic insufficiency
 - →Not limited by advanced (structural/restrictive) heart disease
- Additional prospective clinical studies are needed to confirm the potential benefits of SAVM in the identified responder group

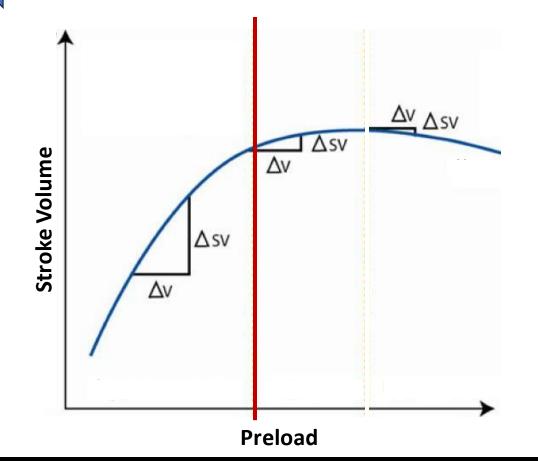
Z-score for composite endpoint: KCCQ, 6MWT, NTpro-BNP, PCWP



Z-score for composite endpoint: KCCQ, 6MWT, NTpro-BNP, PCWP

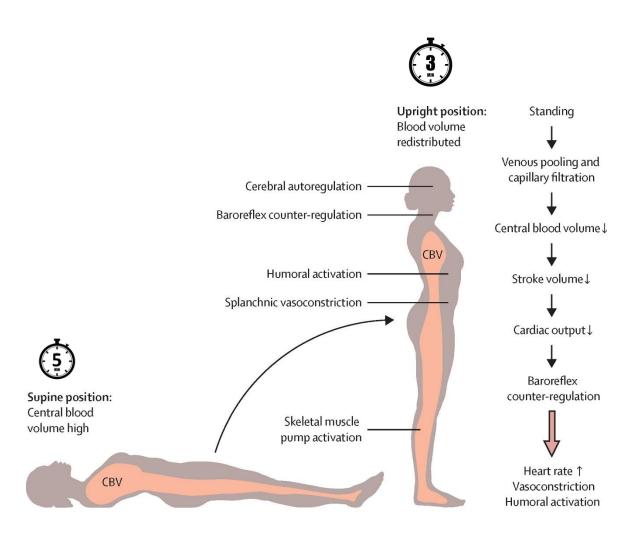
Excluded Group – $E/A \ge 2.0$ OR [PP ≤ -7 AND HR < 15])


Responder Group Rationale



Small changes in preload = Large decreases in SV, small change in pressure

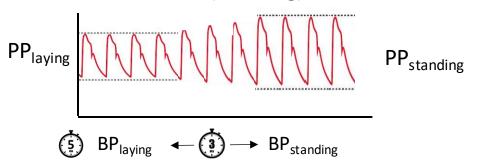
Reducing venous return reduces SV vs. pressure


Responder

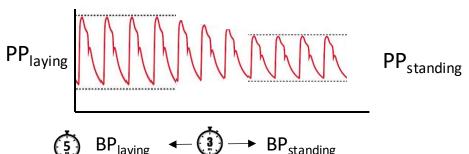
Small changes preload = Large change in pressure, small change in SV

Reducing venous return reduces pressure vs. SV

Orthostatic Pulse Pressure and Heart Rate


Pulse Pressure (PP):

Systolic Blood Pressure – Diastolic Blood Pressure


Orthostatic Pulse Pressure:

PP (post 3m standing) – PP (post 5m laying)

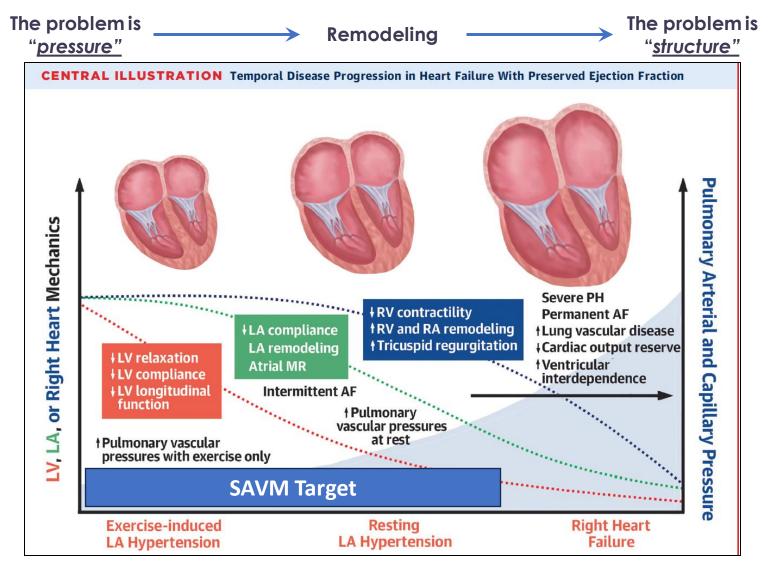
Increase PP (widening) ↑ Stroke Volume

<u>Decrease PP (narrowing)</u> ↓ Stroke Volume

Diastolic Dysfunction – Mitral E/A

Precipitating Condition

Obesity


Hypertension

CKD

Afib

CAD

Fluid Retention Increase SNS Activity Myocardial Stiffening

Borlaug BA, et al. J Am Coll Cardiol. 2023;81(18):1810–1834.

Baseline Medical History: Responder vs Non-Responder

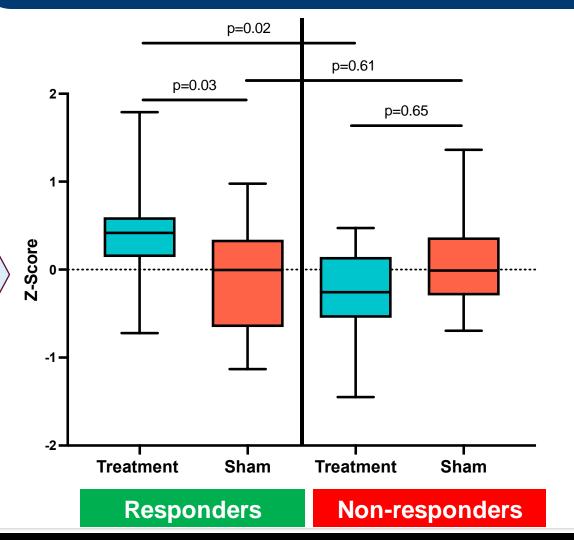
Variable	Responder N=48	Non-Responder N=41	P-Value		
Age	69 (64, 78)	72 (63, 78)	>0.9		
Female	71%	59% (24)	0.3		
Race – White	88%	90%	0.4		
BMI, kg/m2	33.2 (29.9, 38.4)	34.6 (29.5, 37.8)	>0.9		
Prior HFH	25%	22%	0.8		
Comorbidities					
Sleep Apnea	65%	56%	0.5		
Atrial Fibrillation	29%	76%	< 0.001		
Hypertension	90%	88%	>0.9		
Diabetes	48%	32%	0.14		
CKD	27%	24%	8.0		
Therapies					
Coronary Revasc	40%	27%	0.3		
Ablation for Afib	6.3%	54%	< 0.001		
Beta Blocker	58%	71%	0.3		
MRA	63%	66%	0.8		
Diuretic	88%	85%	>0.9		
SGLT2i	44%	41%	>0.9		

Baseline Hemodynamics and Function: Responder vs Non-Responder

Variable	Responder N=48	Non-Responder N=41	P-Value			
	Labs					
eGFR	60 (42, 75)	61 (55, 84)	0.094			
Hemodynamics						
HR, bpm	74 (65, 80)	70 (65, 77)	0.3			
BP systolic, mmHg	125 (118, 132)	125 (113, 137)	>0.9			
RAP(resting), mmHg	8.0 (5.0, 11.0)	11.0 (8.0, 13.0)	0.014			
PAD (resting), mmHg	17 (14, 20)	22 (17, 26)	< 0.001			
PAS (resting), mmHg	35 (30, 40)	45 (38, 52)	< 0.001			
PCWP (resting), mmHg	15 (11, 19)	21 (17, 26)	< 0.001			
PCWP (peak), mmHg	35 (31, 41)	39 (34, 47)	0.041			
CO, L/min	5.40 (4.73, 7.00)	5.12 (4.50, 6.20)	0.4			
CI, L/min/m2	2.71 (2.34, 3.36)	2.49 (2.31, 3.00)	0.3			
PVR (resting)	1.57 (1.08, 2.04)	1.55 (1.25, 2.68)	0.6			
Prognosis						
NYHA III/IV	85%	98%	0.065			
KCCQ-OSS	37 (27, 51)	46 (33, 53)	0.072			
6MWD, m	273 (189, 342)	310 (248, 380)	0.089			
NT-proBNP, pg/ml	254 (98, 427)	276 (177, 565)	0.2			

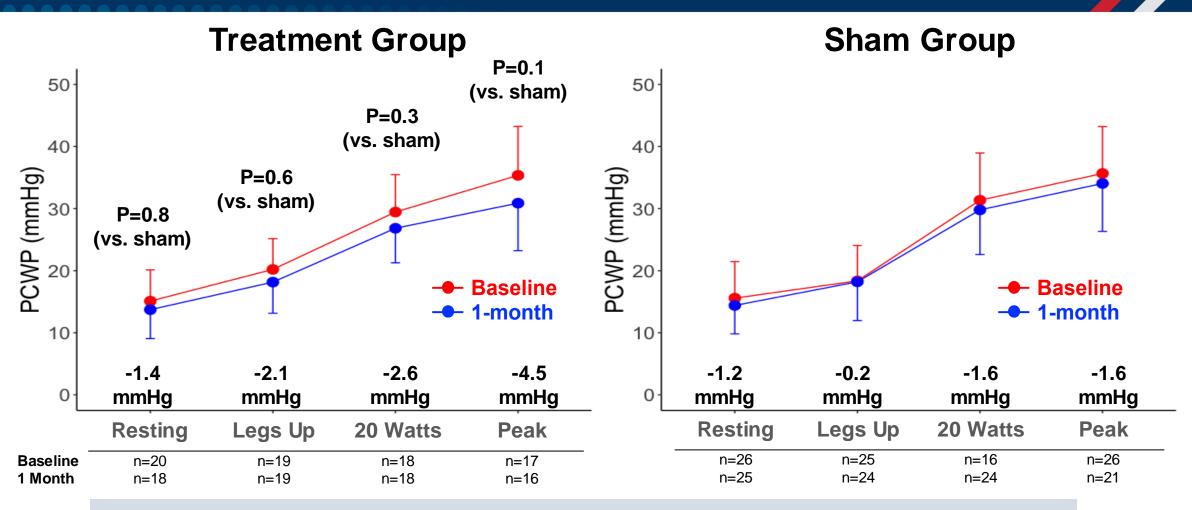
Baseline Echo: Responder vs Non-Responder

Variable	Responder N=48	Non-Responder N=41	P-Value
E/e' (septal)	11.7 (9.8, 13.2)	14.4 (11.3, 19.4)	0.008
LA end-diastolic volume index	14 (11, 19)	22 (16, 29)	<0.001
LA end-systolic volume index	26 (23, 34)	35 (27, 39)	0.006
Mitral E/Mitral A	0.87 (0.70, 0.99)	2.03 (0.93, 2.34)	<0.001
LA reservoir strain Biplane	26 (19, 30)	14 (9, 21)	<0.001
LVEF	60.0 (57.0, 62.0)	60.0 (57.0, 63.0)	>0.9
RVFAC	38.6 (35.3, 41.7)	36.3 (33.1, 39.7)	0.083
TAPSE, mm	1.89 (1.69, 2.23)	1.82 (1.62, 1.93)	0.2

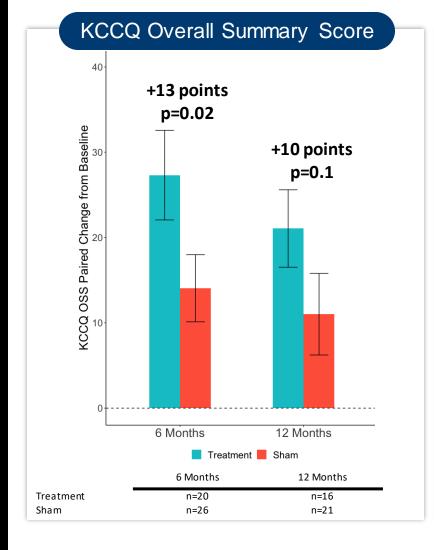

Composite Efficacy Endpoint: Responders vs. Non-responders

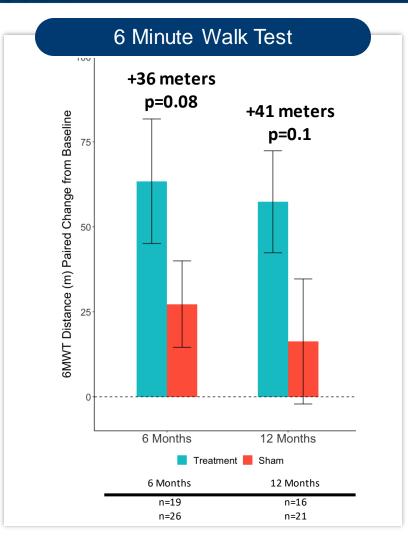
Mean Z score, treatment (GSN ablation) vs. sham procedure in responders vs. non-responders

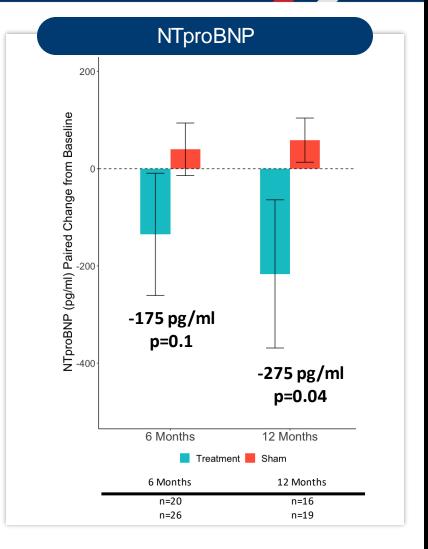
Responder and non-responder subgroups defined by:


- Mitral E/A
- Orthostatic PP
- Orthostatic HR

Significant difference between the treatment effect in responders vs. non-responders


No significant difference in sham group in responders vs. non-responders


Primary Efficacy Endpoint: Responder Group



 Δ -18 mmHg/W/kg (p=0.02) in Work Index PCWP Δ +95 seconds (p=0.02) exercise duration

Responder Patient Population Individual Outcomes

Conclusions

- Identified responder group makes up ~55% of the population
- Responders can be easily identified using standard echo and orthostasis measurements
- Responders saw clinical and statistical improvements in KCCQ-OSS, NTproBNP, and 6MWT at 6-months and trending towards significance at 12-months
- Additional prospective clinical studies are needed to confirm the potential benefits of SAVM in the identified responder group