THE HEART FAILURE TEAMS GATHER

Huntington Convention Center, Cleveland, OH | October 6-9, 2023

Endovascular Ablation of the Right Greater Splanchnic Nerve in HFpEF: Primary Analysis of the REBALANCE-HF Randomized Trial

Sanjiv J. Shah, Sheldon Litwin, Peter Fail, Teona Zirakashvili, Tamaz Shaburishvili, Parag Goyal, Scott Hummel, Rajeev C. Mohan, Matthew J. Price, Ravi B. Patel, Vivek Y. Reddy, Daniel Burkhoff, Sami I. Somo, Manesh R. Patel, Barry Borlaug, and <u>Marat Fudim</u> on behalf of the REBALANCE-HF investigators

Declaration of interests

Research contracts: Study was supported by Axon Therapies

Consulting/Royalties/Owner/Stockholder of a healthcare company: Axon Therapies

Hyperactive SNS Results in Acute/Chronic Venoconstriction

50% of patients had increase in pressure but no change in weight

Fudim et al. JACC 2022; Birch et al. J Vasc Res 2008

- The body's main blood volume reservoir or "buffer"
- 25% of all blood in the body is in the liver and spleen alone
- Activation of the sympathetic nervous system (SNS) recruits blood from the splanchnic bed into central circulating volume

Evidence to Date for GSN Ablation in HF

Transvenous right-sided GSN ablation procedure

Temporary Anesthetic GSN block

- **Splanchnic HF-1** (2018) n=11, Hospitalized HFrEF

- **Splanchnic HF-2** (2020) n=15, Ambulatory HFrEF

Surgical: Permanent GSN Ablation

- Malek, et al. (2021) n=11, Ambulatory HFpEF

Long-Term Anesthetic GSN Block

- **Splanchnic HF-3** (ongoing) n=5, Ambulatory HF

Catheter: Permanent GSN Ablation

- **SAVM Feasibility** (2021) n=11, Ambulatory HFpEF
- **SAVM Pilot** (2021) n=10, Ambulatory HFrEF
- REBALANCE HF (ongoing)
 Exploratory Feasibility RCT
 n=90, Ambulatory HFpEF

Fudim et al. JACC BTS 2022

Study Objectives for REBALANCE-HF

- Establish safety of Splanchnic Ablation for Volume Management (SAVM)
- Ensure replicability of the procedure and technical success at multiple sites with multiple operators
- Feasibility Study: Identify the responder subgroups for future studies

REBALANCE-HF Feasibility Study: Design

CHERCHEART FAILure TEAMS GATHER

Key Inclusion and Exclusion Criteria

Key inclusion criteria:

✓ NYHA class II to ambulatory class IV

✓ At least 1 of the following:

- \geq 1 HF hospitalization within prior 12 months
- IV diuretics of intensification of oral diuresis for worsening HF within prior 12 months
- NTproBNP >150/>450 pg/ml (NSR/AF) or BNP >50/150 pg/ml (NSR/AF)
- ✓ LVEF ≥50% in the past 3 months
- Ongoing stable HF GDMT and diuretics for >30 days
- ✓ Exercise PCWP≥25 mmHg

Screening Committee: Actively reviewed all patients prior to RHC procedure

Key exclusion criteria:

× Advanced HF, defined by:

- Stage D HF, non-ambulatory class IV HF
- Cardiac index <2.0 L/min/m²

× Orthostatic hypotension:

- ↓Systolic BP >30 mmHg or ↑HR >20 bpm supine→standing
- × Significant valve disease
- X Obstructive HCM, restrictive CM, constrictive pericarditis, cardiac amyloid, or other infiltrative CM

Consort Diagram

Baseline Characteristics of Overall Population

Variable	Treatment N=44	Sham N=46	
Age	72 (64, 79)	71 (60, 77)	
Female	54.5%	73.9%	
White	85%	91%	
BMI, kg/m2	33(29.3, 36.9) 35.5(30.1,		
Prior HFH	22.7% 23.9%		
Comorbidities			
Sleep Apnea	54.5%	65.2%	
Atrial Fibrillation	54.5%	47.8%	
Hypertension	84.1%	91.3%	
Diabetes	40.9%	39.1%	
COPD	6.8%	21.7%	
CKD	20.5%	30.4%	
	ies		
Coronary Revasc	34.1%	32.6%	
Ablation for Afib	25%	30.4%	
Cardio Mems	6.8%	2.2%	
Beta Blocker	54.5%	69.6%	
MRA	50%	80.4%	
Diuretic	82%	91%	
SGLT2i	43.2%	43.5%	
Lab			
eGFR	65 (52.8, 81)	59 (45, 76)	

Variable	Treatment N=44	Sham N=46		
Echo				
LVEF	60 (57.8, 64)	59.5 (55.8, 61.3)		
E/e'	12.2 (10, 16.9)	12.1 (9.9, 17.2)		
Tricuspid Regurg (mild/mod)	56.8%	30.4%		
RVFAC	36 (32, 40.1)	37.7 (35.3, 40.7)		
TAPSE, mm	1.9 (1.6, 2.2)	1.8 (1.6, 2)		
Hemodynamics				
HR, bpm	71.5 (65.8, 80)	72.5 (65, 78.8)		
BP systolic, mmHg	127 (117.8, 134.3)	122 (115.3, 134)		
RAP(resting), mmHg	10 (6.5, 13)	9 (5.5, 12)		
PAD (resting), mmHg	19.5 (16.3, 22.8)	19 (14.8, 22.3)		
PAS (resting), mmHg	38.5 (34, 44.8)	38 (31.8, 46.3)		
PCWP (resting), mmHg	17 (13, 22)	17 (14.5, 22)		
PCWP (peak), mmHg	36 (31, 44)	36 (31, 43)		
CO, L/min	5.3 (4.6, 6.7)	5.1 (4.8, 7)		
CI, L/min/m2	2.57 (2.4, 3.0)	2.57 (2.3, 3.2)		
PVR (resting)	1.4 (1.1, 2.4)	1.6 (1.1, 2.1)		
Prognosis				
NYHA III/IV	89%	93%		
KCCQ-OSS	42.5 (27.4, 53.3)	44 (28.2, 52.3)		
6MWD, m	316.5 (216.3, 381)	283.5 (205, 343.8)		
NT-proBNP, pg/ml	250 (103, 516.3)	304.5 (128.5, 447.5)		

Results

Procedural Data

Metric	Treatment N=44
Procedure Time (min)	53 (43, 61)
Treatment Success	43 (98%)
Anesthesia	
General anesthesia	28 (64%)
Moderate conscious sedation	14 (32%)
TIVA with preserved spontaneous ventilation	2 (4.5%)
Contrast volume (mL)	60 (48, 100)

Continuous variables are presented as median (25th, 75th percentile) Categorical variables are presented as n (%)

Primary Safety Endpoint

CEC Adjudicated Adverse Events	Treatment (N=44)		Sham (N=46)		P-value
	No. of Events	No. of Pts (%)	No. of Events	No. of Pts (%)	
Primary Safety Outcomes at 1-month					
Device or procedure related SAE	3	3 (7%)	1	1 (2%)	0.3
Aspiration during anesthesia	1	1 (2%)	1	1 (2%)	1.0
Pain*	2	2 (5%)	0	0 (0%)	0.2
Secondary Safety Outcomes up to 12-months					
Serious device-related or vascular event	0	0 (0%)	0	0 (0%)	
Acute kidney injury requiring renal replacement Rx	0	0 (0%)	0	0 (0%)	
Worsening GFR >50%	0	0 (0%)	0	0 (0%)	
All adverse events	24	18 (41%)	22	12 (26%)	0.2
Serious	7	7 (16%)	7	6 (13%)	0.8
Serious—related to device or procedure	0	0 (0%)	0	0 (0%)	
Non-serious	17	15 (34%)	15	9 (20%)	0.2
Orthostasis	5	5 (11%)	3	3 (7%)	0.5
Nausea / bloating	1	1 (2%)	1	1 (2%)	1.0
Heart failure hospitalization	1	1 (2%)	3	3 (7%)	0.6
All-cause mortality (Non-cardiovascular mortality)#	1	1 (2%)	0	0 (0%)	0.5
*Procedural pain was transient and resolved in all cases	-				

#Trip and fall with no evidence of hypotension or stroke

Primary Efficacy Endpoint: PCWP

Lower Work Index PCWP (2-9 mmHg/W/kg p=0.3) and longer exercise duration (235 seconds; p=0.1) in the Treatment Group vs Sham Group

No significant differences in *A*PCWP, *A*RA pressure, or *A*PA pressures between Treatment and Sham groups

Secondary Efficacy Endpoints: KCCQ, 6MWT, NTproBNP

between GSN ablation and sham groups

Medication changes during the trial

Responder Analysis Overview

Responder Analysis: Z-score method

- Z-score standardizes magnitude of response so multiple outcomes can be combined and compared together on a single, uniform scale
- Treatment effect (change in Z-score) was evaluated in the following subgroups:

*Continuous variables evaluated in terciles

Z-score for combined KCCQ, 6MWT, NTproBNP, PCWP

Responder Group

Primary Efficacy Endpoint: Responder Group

 \triangle -18 mmHg/W/kg (p=0.02) in Work Index PCWP \triangle +95 seconds (p=0.02) in Exercise Duration

53% of the Population

Responder Patient Population Individual Outcomes

NTproBNP 200 Baseline from Change 1 Paired -200 -200 (pg/ml) P -400 -400 -175 pg/ml p=0.1 -275 pg/ml p=0.04 6 Months 12 Months Treatment Sham 6 Months 12 Months n=20 n=16 n=26 n=19

- SAVM (right-sided GSN ablation) is quick to perform and appears safe and welltolerated
- In a population of broad inclusion/exclusion criteria with HFpEF, SAVM had limited impact on hemodynamics (at 1 month) or clinical outcomes (at 6 and 12 months)
- Potential responder group identified:
 - →Rise in cardiac output when going from supine → standing position and during exercise →Not limited by chronotropic insufficiency →Not limited by advanced (structural/restrictive) heart disease
- Additional prospective clinical studies are needed to confirm the potential benefits of SAVM in the identified responder group
- Deeper dive into REBALANCE-HF responder group will be presented later today @12:15 pm (poster session)

Thank you to all the Investigators and their Teams

Cardiovascular Institute of the South Peter Fail, MD Vinod Nair, MD	Virginia Commonwealth University Keyur Shah, MD Zachary Gertz, MD	Cardiology P.C. Farrell O. Mendelsohn, MD Rayan Saab, MD
Cornell Medical Center Parag Goyal, MD Luke Kim, MD	University of Michigan Scott Hummel, MD Victor Moles, MD Ahmed Abdel-Latif, MD	Prairie Cardiovascular Krishna Rocha-Singh, MD Gabor Matos, MD
Northwestern Medical Center Ravi Patel, MD Keith Benzuly, MD	The Ohio State University Ralph Augostini, MD Ramesh Emani, MD	University of California San Francisco Liviu Klein, MD Richard Cheng, MD
Mount Sinai Sumeet Mitter, MD Abhishek Mann, MD	University of Chicago Mark N. Belkin, MD John Blair, MD	Arizona Cardiology Institute Vijendra Swarup, MD Sudarone Thihalolipavan, MD
Columbia Nir Uriel, MD Sanjum Sethi, MD	Scripps Rajeev Mohan, MD Matthew Price, MD	St Vincent's Ascension Ashwin Ravichandran, MD Brian Bigelow, MD
Medical University of South Carolina Sheldon Litwin, MD Christoper D. Nielson	Mayo Clinic Barry Borlaug, MD Rajiv Gulati, MD	
Duke University Marat Fudim, MD Manesh Patel, MD	Tbilisi Heart and Vascular Clinic Tamaz Shaburishvili, MD Teona Zirakashvili, MD	

Weill Cornell Medicine Northwestern University

Cardiovascular Institute

GS

Icahn School of Medicine at Mount Sinai

→ NewYork-¬ Presbyterian

COLUMBIA

Musc Medical University of South Carolina

CARDI@LOGY, P.C.

Health

UChicago Medicine

UNIVERSITY OF MICHIGAN HEALTH

THE OHIO STATE UNIVERSITY

WEXNER MEDICAL CENTER

MICHIGAN MEDICINE

MAYO CLINIC COLLEGE OF MEDICINE AND SCIENCE

Tbilisi Heart And Vascular Clinic

UCSF

